Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Adam Willoughby
- Chad Steed
- Junghoon Chae
- Mingyan Li
- Rishi Pillai
- Sam Hollifield
- Travis Humble
- Yaosuo Xue
- Brandon Johnston
- Brian Weber
- Bruce A Pint
- Charles Hawkins
- Fei Wang
- Isaac Sikkema
- Jiheon Jun
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Marie Romedenne
- Mary A Adkisson
- Oscar Martinez
- Phani Ratna Vanamali Marthi
- Priyanshi Agrawal
- Rafal Wojda
- Samudra Dasgupta
- Sreenivasa Jaldanki
- Suman Debnath
- Sunil Subedi
- T Oesch
- Yong Chae Lim
- Yonghao Gui
- Zhili Feng

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

Stability performance of interconnected power grids plays crucial roles on their secure operation to prevent cascading failure and blackout.