Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Adam Willoughby
- Rishi Pillai
- Alexander I Wiechert
- Benjamin Manard
- Brandon Johnston
- Bruce A Pint
- Charles F Weber
- Charles Hawkins
- Costas Tsouris
- Derek Splitter
- Gurneesh Jatana
- James Szybist
- Jiheon Jun
- Joanna Mcfarlane
- Jonathan Willocks
- Marie Romedenne
- Matt Vick
- Priyanshi Agrawal
- Vandana Rallabandi
- Yong Chae Lim
- Zhili Feng

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Method to operate a compression ignition engine in dual fuel operation with premixed turbulent flame propagation from low to high loads.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance