Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ali Passian
- Amit Shyam
- Beth L Armstrong
- Peeyush Nandwana
- Alex Plotkowski
- Brian Post
- Jun Qu
- Rangasayee Kannan
- Sudarsanam Babu
- Yong Chae Lim
- Zhili Feng
- Adam Willoughby
- Blane Fillingim
- Bruce A Pint
- Corson Cramer
- James A Haynes
- Jian Chen
- Lauren Heinrich
- Meghan Lamm
- Rishi Pillai
- Ryan Dehoff
- Steve Bullock
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Wei Zhang
- Ying Yang
- Yousub Lee
- Adam Stevens
- Alice Perrin
- Andres Marquez Rossy
- Ben Lamm
- Brandon Johnston
- Bryan Lim
- Charles Hawkins
- Christopher Fancher
- Christopher Ledford
- Claire Marvinney
- Dali Wang
- David J Mitchell
- Dean T Pierce
- Ethan Self
- Gabriel Veith
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Harper Jordan
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Marie Romedenne
- Marm Dixit
- Matthew S Chambers
- Michael Kirka
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Peter Wang
- Priyanshi Agrawal
- Roger G Miller
- Rose Montgomery
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Srikanth Yoginath
- Steven J Zinkle
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Varisara Tansakul
- Venugopal K Varma
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yanli Wang
- Yiyu Wang
- Yukinori Yamamoto
- Yutai Kato

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi