Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities
(28)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Adam Willoughby
- Chad Steed
- Junghoon Chae
- Rishi Pillai
- Sergei V Kalinin
- Travis Humble
- Annetta Burger
- Anton Ievlev
- Bogdan Dryzhakov
- Brandon Johnston
- Bruce A Pint
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Debraj De
- Gautam Malviya Thakur
- James Gaboardi
- Jesse McGaha
- Jiheon Jun
- Kevin M Roccapriore
- Kevin Sparks
- Liam Collins
- Liz McBride
- Marie Romedenne
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Priyanshi Agrawal
- Samudra Dasgupta
- Stephen Jesse
- Steven Randolph
- Todd Thomas
- Xiuling Nie
- Yong Chae Lim
- Yongtao Liu
- Zhili Feng

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.