Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Adam Willoughby
- Alexey Serov
- Ali Abouimrane
- Jaswinder Sharma
- Marm Dixit
- Rishi Pillai
- Ruhul Amin
- Viswadeep Lebakula
- Xiang Lyu
- Aaron Myers
- Alexandre Sorokine
- Amit K Naskar
- Annetta Burger
- Ben LaRiviere
- Beth L Armstrong
- Brandon Johnston
- Bruce A Pint
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Clinton Stipek
- Daniel Adams
- David L Wood III
- Debraj De
- Eve Tsybina
- Gabriel Veith
- Gautam Malviya Thakur
- Georgios Polyzos
- Holly Humphrey
- Hongbin Sun
- James Gaboardi
- James Szybist
- Jesse McGaha
- Jessica Moehl
- Jiheon Jun
- Jonathan Willocks
- Junbin Choi
- Justin Cazares
- Kevin Sparks
- Khryslyn G Araño
- Liz McBride
- Logan Kearney
- Lu Yu
- Marie Romedenne
- Matt Larson
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nihal Kanbargi
- Paul Groth
- Philipe Ambrozio Dias
- Pradeep Ramuhalli
- Priyanshi Agrawal
- Ritu Sahore
- Taylor Hauser
- Todd Thomas
- Todd Toops
- Xiuling Nie
- Yaocai Bai
- Yong Chae Lim
- Zhijia Du
- Zhili Feng

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.