Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Amit Shyam
- Beth L Armstrong
- Peeyush Nandwana
- Alex Plotkowski
- Brian Post
- Rafal Wojda
- Ying Yang
- Zhili Feng
- Edgar Lara-Curzio
- Jian Chen
- Jun Qu
- Prasad Kandula
- Rangasayee Kannan
- Ryan Dehoff
- Sudarsanam Babu
- Yong Chae Lim
- Adam Willoughby
- Alice Perrin
- Blane Fillingim
- Bruce A Pint
- Christopher Fancher
- Christopher Ledford
- Corson Cramer
- David S Parker
- Eric Wolfe
- James A Haynes
- Lauren Heinrich
- Meghan Lamm
- Michael Kirka
- Rishi Pillai
- Rob Moore II
- Shajjad Chowdhury
- Steve Bullock
- Steven J Zinkle
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Vandana Rallabandi
- Wei Zhang
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Adam Stevens
- Alex Roschli
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Benjamin Lawrie
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Brian Sales
- Bryan Lim
- Cameron Adkins
- Charles Hawkins
- Chengyun Hua
- Costas Tsouris
- Dali Wang
- David J Mitchell
- Dean T Pierce
- Diana E Hun
- Ethan Self
- Frederic Vautard
- Gabor Halasz
- Gabriel Veith
- Gerry Knapp
- Gina Accawi
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- Hsin Wang
- Isha Bhandari
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jiaqiang Yan
- Jiheon Jun
- Jong K Keum
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Liam White
- Marcio Magri Kimpara
- Marie Romedenne
- Mark M Root
- Marm Dixit
- Matthew Brahlek
- Matthew S Chambers
- Michael Borish
- Mike Zach
- Mina Yoon
- Mostak Mohammad
- Nancy Dudney
- Nedim Cinbiz
- Nicholas Richter
- Nidia Gallego
- Omer Onar
- Patxi Fernandez-Zelaia
- Peter Wang
- Petro Maksymovych
- Philip Boudreaux
- Praveen Kumar
- Priyanshi Agrawal
- Radu Custelcean
- Roger G Miller
- Rose Montgomery
- Sarah Graham
- Sergiy Kalnaus
- Subho Mukherjee
- Suman Debnath
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Venkatakrishnan Singanallur Vaidyanathan
- Venugopal K Varma
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi