Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Amit Shyam
- Beth L Armstrong
- Peeyush Nandwana
- Ying Yang
- Zhili Feng
- Alex Plotkowski
- Brian Post
- Edgar Lara-Curzio
- Jian Chen
- Joseph Chapman
- Jun Qu
- Nicholas Peters
- Rangasayee Kannan
- Ryan Dehoff
- Sudarsanam Babu
- Yong Chae Lim
- Adam Willoughby
- Alice Perrin
- Blane Fillingim
- Bruce A Pint
- Christopher Ledford
- Corson Cramer
- David S Parker
- Eric Wolfe
- Hsuan-Hao Lu
- James A Haynes
- James Klett
- Joseph Lukens
- Lauren Heinrich
- Meghan Lamm
- Michael Kirka
- Muneer Alshowkan
- Rishi Pillai
- Rob Moore II
- Steve Bullock
- Steven J Zinkle
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Wei Zhang
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Adam Stevens
- Andres Marquez Rossy
- Andrew F May
- Anees Alnajjar
- Annetta Burger
- Ben Garrison
- Benjamin Lawrie
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Brian Sales
- Brian Williams
- Bryan Lim
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Charlie Cook
- Chengyun Hua
- Christopher Fancher
- Christopher Hershey
- Costas Tsouris
- Craig Blue
- Dali Wang
- Daniel Rasmussen
- David J Mitchell
- Dean T Pierce
- Debraj De
- Ethan Self
- Frederic Vautard
- Gabor Halasz
- Gabriel Veith
- Gautam Malviya Thakur
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Hsin Wang
- James Gaboardi
- Jay Reynolds
- Jeff Brookins
- Jesse McGaha
- Jiaqiang Yan
- Jiheon Jun
- John Lindahl
- Jong K Keum
- Jordan Wright
- Jovid Rakhmonov
- Kevin Sparks
- Khryslyn G Araño
- Liz McBride
- Mariam Kiran
- Marie Romedenne
- Marm Dixit
- Matthew Brahlek
- Matthew S Chambers
- Mike Zach
- Mina Yoon
- Nancy Dudney
- Nedim Cinbiz
- Nicholas Richter
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Peter Wang
- Petro Maksymovych
- Priyanshi Agrawal
- Radu Custelcean
- Roger G Miller
- Rose Montgomery
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Todd Thomas
- Tolga Aytug
- Tony Beard
- Trevor Aguirre
- Venugopal K Varma
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xiuling Nie
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.