Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Tomonori Saito
- Jeff Foster
- Anisur Rahman
- Diana E Hun
- Gabriel Veith
- Beth L Armstrong
- Guang Yang
- Mary Danielson
- Michelle Lehmann
- Robert Sacci
- Syed Islam
- Zoriana Demchuk
- Alexei P Sokolov
- Benjamin L Doughty
- Catalin Gainaru
- Ethan Self
- Isaiah Dishner
- Jaswinder Sharma
- Josh Michener
- Liangyu Qian
- Natasha Ghezawi
- Ramesh Bhave
- Sergiy Kalnaus
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Vera Bocharova
- Achutha Tamraparni
- Alexandra Moy
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andre O Desjarlais
- Anna M Mills
- Chanho Kim
- Corson Cramer
- Georgios Polyzos
- Ilias Belharouak
- John F Cahill
- Jun Yang
- Karen Cortes Guzman
- Keju An
- Khryslyn G Araño
- Kuma Sumathipala
- Logan Kearney
- Matthew S Chambers
- Mengjia Tang
- Michael Toomey
- Nancy Dudney
- Nick Galan
- Nick Gregorich
- Nihal Kanbargi
- Santanu Roy
- Shailesh Dangwal
- Shannon M Mahurin
- Tao Hong
- Uvinduni Premadasa
- Xiang Lyu

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

PET is used in many commercial products, but only a fraction is mechanically recycled, and even less is chemically recycled.

Developed a novel energy efficient, cost-effective, environmentally friendly process for separation of lithium from end-of-life lithium-ion batteries.

This work presents a novel method for upcycling polyethylene terephthalate (PET) waste into sustainable vitrimer materials. By combining bio-based crosslinkers with our PET-based macromonomer, we developed dynamically bonded plastics that are renewably sourced.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).