Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Tomonori Saito
- Adam M Guss
- Anisur Rahman
- Jeff Foster
- Diana E Hun
- Josh Michener
- Liangyu Qian
- Mary Danielson
- Syed Islam
- Zoriana Demchuk
- Alexei P Sokolov
- Andrzej Nycz
- Austin L Carroll
- Catalin Gainaru
- Isaiah Dishner
- John F Cahill
- Kuntal De
- Michelle Lehmann
- Natasha Ghezawi
- Ramesh Bhave
- Serena Chen
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Udaya C Kalluri
- Vera Bocharova
- Xiaohan Yang
- Achutha Tamraparni
- Alex Walters
- Andre O Desjarlais
- Benjamin L Doughty
- Biruk A Feyissa
- Carrie Eckert
- Chris Masuo
- Clay Leach
- Corson Cramer
- Debjani Pal
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Jay D Huenemann
- Joanna Tannous
- Karen Cortes Guzman
- Kuma Sumathipala
- Kyle Davis
- Mengjia Tang
- Nick Galan
- Nick Gregorich
- Paul Abraham
- Robert Sacci
- Santanu Roy
- Shailesh Dangwal
- Shannon M Mahurin
- Tao Hong
- Uvinduni Premadasa
- Vilmos Kertesz
- Vincent Paquit
- William Alexander
- Yang Liu

This invention introduces an innovative method for upcycling waste polyalkenamers, such as polybutadiene and acrylonitrile butadiene styrene, into high-performance materials through ring-opening metathesis polymerization (ROMP).

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

With the ever-increasing problem of plastic waste, several avenues to decrease plastic use and manage waste introduced by disposable plastic products have arisen.

This invention utilizes a salt and an amine containing small molecule or polymer for the synthesis of a bulky anionic salt or containing single-ion conducting polymer electrolyte for the use in Li-ion and beyond Li-ion batteries.

Carbon capture from air typically requires large amounts of solvent and sorbent that are energetically costly to regenerate. It also suffers from degradation, is environmentally unsustainable, and very expensive.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.