Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Tomonori Saito
- Ali Passian
- Anisur Rahman
- Jeff Foster
- Diana E Hun
- Mary Danielson
- Syed Islam
- Alexei P Sokolov
- Catalin Gainaru
- Michelle Lehmann
- Natasha Ghezawi
- Ramesh Bhave
- Vera Bocharova
- Zoriana Demchuk
- Achutha Tamraparni
- Benjamin L Doughty
- Bruce Moyer
- Claire Marvinney
- Corson Cramer
- Debjani Pal
- Harper Jordan
- Isaiah Dishner
- Jeffrey Einkauf
- Jennifer M Pyles
- Joel Asiamah
- Joel Dawson
- Josh Michener
- Justin Griswold
- Karen Cortes Guzman
- Kuma Sumathipala
- Kuntal De
- Laetitia H Delmau
- Liangyu Qian
- Luke Sadergaski
- Mengjia Tang
- Mike Zach
- Nance Ericson
- Nick Galan
- Nick Gregorich
- Padhraic L Mulligan
- Robert Sacci
- Sandra Davern
- Santanu Roy
- Shailesh Dangwal
- Shannon M Mahurin
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Srikanth Yoginath
- Tao Hong
- Uvinduni Premadasa
- Varisara Tansakul

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

PET is used in many commercial products, but only a fraction is mechanically recycled, and even less is chemically recycled.

Developed a novel energy efficient, cost-effective, environmentally friendly process for separation of lithium from end-of-life lithium-ion batteries.

This work presents a novel method for upcycling polyethylene terephthalate (PET) waste into sustainable vitrimer materials. By combining bio-based crosslinkers with our PET-based macromonomer, we developed dynamically bonded plastics that are renewably sourced.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).