Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Chris Tyler
- Sheng Dai
- Justin West
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Ritin Mathews
- Zhenzhen Yang
- Craig A Bridges
- Edgar Lara-Curzio
- Shannon M Mahurin
- David Olvera Trejo
- Eric Wolfe
- Ilja Popovs
- J.R. R Matheson
- Jaydeep Karandikar
- Li-Qi Qiu
- Saurabh Prakash Pethe
- Scott Smith
- Steven J Zinkle
- Tolga Aytug
- Uday Vaidya
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Willoughby
- Ahmed Hassen
- Akash Jag Prasad
- Alexei P Sokolov
- Anees Alnajjar
- Ben Lamm
- Beth L Armstrong
- Brandon Johnston
- Brian Gibson
- Brian Post
- Bruce A Pint
- Bruce Moyer
- Calen Kimmell
- Charles Hawkins
- Emma Betters
- Frederic Vautard
- Greg Corson
- Jayanthi Kumar
- Jesse Heineman
- John Potter
- Josh B Harbin
- Kaustubh Mungale
- Marie Romedenne
- Meghan Lamm
- Nageswara Rao
- Nidia Gallego
- Phillip Halstenberg
- Rishi Pillai
- Santa Jansone-Popova
- Shajjad Chowdhury
- Subhamay Pramanik
- Tao Hong
- Tim Graening Seibert
- Tomonori Saito
- Tony L Schmitz
- Vladimir Orlyanchik
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- Xiang Chen

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).