Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Rafal Wojda
- Zhenzhen Yang
- Craig A Bridges
- Prasad Kandula
- Shannon M Mahurin
- Edgar Lara-Curzio
- Ilja Popovs
- Li-Qi Qiu
- Saurabh Prakash Pethe
- Shajjad Chowdhury
- Tolga Aytug
- Uday Vaidya
- Vandana Rallabandi
- Vincent Paquit
- Ahmed Hassen
- Akash Jag Prasad
- Alexei P Sokolov
- Alex Plotkowski
- Anees Alnajjar
- Ben Lamm
- Beth L Armstrong
- Bruce Moyer
- Calen Kimmell
- Canhai Lai
- Christopher Fancher
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Eric Wolfe
- Frederic Vautard
- James Haley
- James Parks II
- Jayanthi Kumar
- Jaydeep Karandikar
- Kaustubh Mungale
- Marcio Magri Kimpara
- Meghan Lamm
- Mostak Mohammad
- Nageswara Rao
- Nidia Gallego
- Omer Onar
- Phillip Halstenberg
- Praveen Kumar
- Ryan Dehoff
- Santa Jansone-Popova
- Subhamay Pramanik
- Subho Mukherjee
- Suman Debnath
- Tao Hong
- Tomonori Saito
- Vladimir Orlyanchik
- Vlastimil Kunc
- Zackary Snow

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.