Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Amit K Naskar
- Craig A Bridges
- Edgar Lara-Curzio
- Shannon M Mahurin
- Frederic Vautard
- Ilja Popovs
- Jaswinder Sharma
- Li-Qi Qiu
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Ahmed Hassen
- Alexei P Sokolov
- Anees Alnajjar
- Arit Das
- Benjamin L Doughty
- Ben Lamm
- Beth L Armstrong
- Bruce Moyer
- Christopher Bowland
- Eric Wolfe
- Felix L Paulauskas
- Holly Humphrey
- Jayanthi Kumar
- Kaustubh Mungale
- Meghan Lamm
- Nageswara Rao
- Nidia Gallego
- Phillip Halstenberg
- Robert E Norris Jr
- Santa Jansone-Popova
- Santanu Roy
- Shajjad Chowdhury
- Subhamay Pramanik
- Sumit Gupta
- Tao Hong
- Tomonori Saito
- Uvinduni Premadasa
- Vera Bocharova
- Vlastimil Kunc

The invention is a material that will selectively absorb lithium from process waters, and then in a subsequent step, allow the lithium to be released and concentrated; allowing efficient lithium extraction from fluids for use as commodity chemicals.

Low-Temperature Electrochemical Conversion of Carbon Dioxide into Graphite in Molten Carbonate Salts
The capture and conversion of atmospheric carbon dioxide (CO2) into non-volatile value-added solid carbon products is an urgent need to address the deleterious effects of the rising level of atmospheric CO2.

Selective CO2/N2 separation using molecular sieve membranes.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The widespread use of inexpensive salt hydrate-based phase change materials, or PCMs, has been prevented by a key technical challenge: phase separation, also known as incongruency, which results in the significant degradation of the materials' ability to store thermal energy o

This invention introduces a method for selectively extracting lithium from lithium sulfate aqueous solutions using an aluminum-containing sorbent material.

Innovative low-shear extrusion and compression method for high-density bonded permanent magnets with uniform magnetic properties.
