Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Kyle Gluesenkamp
- Zhenzhen Yang
- Amit K Naskar
- Craig A Bridges
- Edgar Lara-Curzio
- Shannon M Mahurin
- Bo Shen
- Frederic Vautard
- Ilja Popovs
- Jaswinder Sharma
- Li-Qi Qiu
- Logan Kearney
- Melanie Moses-DeBusk Debusk
- Michael Toomey
- Nihal Kanbargi
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Ahmed Hassen
- Alexei P Sokolov
- Anees Alnajjar
- Arit Das
- Benjamin L Doughty
- Ben Lamm
- Beth L Armstrong
- Bruce Moyer
- Christopher Bowland
- Dhruba Deka
- Eric Wolfe
- Felix L Paulauskas
- Holly Humphrey
- James Manley
- Jayanthi Kumar
- Kaustubh Mungale
- Meghan Lamm
- Nageswara Rao
- Navin Kumar
- Nidia Gallego
- Phillip Halstenberg
- Robert E Norris Jr
- Santa Jansone-Popova
- Santanu Roy
- Shajjad Chowdhury
- Sreshtha Sinha Majumdar
- Subhamay Pramanik
- Sumit Gupta
- Tao Hong
- Tomonori Saito
- Tugba Turnaoglu
- Uvinduni Premadasa
- Vera Bocharova
- Vlastimil Kunc
- Xiaobing Liu
- Yeonshil Park
- Yifeng Hu

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

The invention describes a configuration of dishwasher using thermoelectric heat pumps that can accomplish energy savings and enhanced drying performance.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

Develop an innovative refrigerator having a thermoelectric cooler cascaded with a regular refrigerator compression system. the TE cooler dedicatedly controls the temperature in a freezer compartment.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.