Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Andrzej Nycz
- Steve Bullock
- Brian Post
- Sheng Dai
- Soydan Ozcan
- Steven Guzorek
- Corson Cramer
- Uday Vaidya
- Vipin Kumar
- Chris Masuo
- Halil Tekinalp
- Meghan Lamm
- Parans Paranthaman
- Ryan Dehoff
- Vincent Paquit
- Bishnu Prasad Thapaliya
- David Nuttall
- Michael Kirka
- Peter Wang
- Umesh N MARATHE
- Zhenzhen Yang
- Adam Stevens
- Alex Roschli
- Alex Walters
- Beth L Armstrong
- Craig A Bridges
- Dan Coughlin
- Greg Larsen
- James Klett
- Katie Copenhaver
- Nadim Hmeidat
- Rangasayee Kannan
- Shannon M Mahurin
- Trevor Aguirre
- Tyler Smith
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Brian Gibson
- Brittany Rodriguez
- Christopher Ledford
- Clay Leach
- Craig Blue
- Edgar Lara-Curzio
- Georges Chahine
- Ilja Popovs
- Jesse Heineman
- Jim Tobin
- John Lindahl
- Joshua Vaughan
- Li-Qi Qiu
- Luke Meyer
- Matt Korey
- Peeyush Nandwana
- Philip Bingham
- Pum Kim
- Sanjita Wasti
- Saurabh Prakash Pethe
- Segun Isaac Talabi
- Subhabrata Saha
- Sudarsanam Babu
- Tolga Aytug
- Tomonori Saito
- Udaya C Kalluri
- William Carter
- Xianhui Zhao
- Adwoa Owusu
- Akash Jag Prasad
- Akash Phadatare
- Alexei P Sokolov
- Alice Perrin
- Amber Hubbard
- Amit Shyam
- Anees Alnajjar
- Ben Lamm
- Bruce Moyer
- Cait Clarkson
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Charlie Cook
- Chelo Chavez
- Christopher Fancher
- Christopher Hershey
- Chris Tyler
- Costas Tsouris
- Daniel Rasmussen
- David J Mitchell
- Diana E Hun
- Dustin Gilmer
- Eric Wolfe
- Erin Webb
- Evin Carter
- Frederic Vautard
- Gabriel Veith
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- Jayanthi Kumar
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- John Potter
- Jordan Wright
- Josh Crabtree
- Julian Charron
- Kaustubh Mungale
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Liam White
- Mark M Root
- Marm Dixit
- Merlin Theodore
- Michael Borish
- Nageswara Rao
- Nidia Gallego
- Obaid Rahman
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Phillip Halstenberg
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Ryan Ogle
- Sana Elyas
- Santa Jansone-Popova
- Sarah Graham
- Shajjad Chowdhury
- Subhamay Pramanik
- Tao Hong
- Thomas Feldhausen
- Tony Beard
- Vladimir Orlyanchik
- William Peter
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

The technologies provide additively manufactured thermal protection system.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.