Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Ilias Belharouak
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Shannon M Mahurin
- Alexey Serov
- Ali Abouimrane
- Beth L Armstrong
- Edgar Lara-Curzio
- Ilja Popovs
- Jaswinder Sharma
- Li-Qi Qiu
- Marm Dixit
- Meghan Lamm
- Ruhul Amin
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Xiang Lyu
- Ahmed Hassen
- Alexei P Sokolov
- Amit K Naskar
- Anees Alnajjar
- Ben Lamm
- Ben LaRiviere
- Bruce Moyer
- David L Wood III
- Eric Wolfe
- Frederic Vautard
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Hongbin Sun
- James Szybist
- Jayanthi Kumar
- Jonathan Willocks
- Junbin Choi
- Kaustubh Mungale
- Khryslyn G Araño
- Logan Kearney
- Lu Yu
- Michael Toomey
- Michelle Lehmann
- Nageswara Rao
- Nance Ericson
- Nidia Gallego
- Nihal Kanbargi
- Paul Groth
- Phillip Halstenberg
- Pradeep Ramuhalli
- Ritu Sahore
- Santa Jansone-Popova
- Shajjad Chowdhury
- Subhamay Pramanik
- Tao Hong
- Todd Toops
- Tomonori Saito
- Vlastimil Kunc
- Yaocai Bai
- Zhijia Du

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

The proposed solid electrolyte can solve the problem of manufacturing solid electrolyte when heating and densifying the solid electrolyte powder. The material can avoid also the use of solid electrolyte additive with cathode to prepare a catholyte.

Anisotropic bonded critical rare earth free permanent magnets in a polymer matrix fabricated using an additive manufacturing process.

Free-standing, thin films were fabricated with a binder resulting in nearly an order of magnitude thickness decrease while increasing porosity and activation energy. These effects of such diminished significantly. Free-standing films could be fabricated with a binder.

This technology creates a light and metalless current collector for battery application. Cathodes coated on this new current collector demonstrated similar contact resistance, lower charge transfer resistance and similar or high rate performance.

The invention is a material that will selectively absorb lithium from process waters, and then in a subsequent step, allow the lithium to be released and concentrated; allowing efficient lithium extraction from fluids for use as commodity chemicals.