Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Kyle Gluesenkamp
- Zhenzhen Yang
- Craig A Bridges
- Shannon M Mahurin
- Bo Shen
- Edgar Lara-Curzio
- Ilja Popovs
- Li-Qi Qiu
- Melanie Moses-DeBusk Debusk
- Saurabh Prakash Pethe
- Soydan Ozcan
- Tolga Aytug
- Uday Vaidya
- Xianhui Zhao
- Ahmed Hassen
- Alexei P Sokolov
- Alex Roschli
- Anees Alnajjar
- Ben Lamm
- Beth L Armstrong
- Bruce Moyer
- Dhruba Deka
- Eric Wolfe
- Erin Webb
- Evin Carter
- Frederic Vautard
- Halil Tekinalp
- James Manley
- Jayanthi Kumar
- Jeremy Malmstead
- Kaustubh Mungale
- Kitty K Mccracken
- Meghan Lamm
- Mengdawn Cheng
- Nageswara Rao
- Navin Kumar
- Nidia Gallego
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Phillip Halstenberg
- Sanjita Wasti
- Santa Jansone-Popova
- Shajjad Chowdhury
- Sreshtha Sinha Majumdar
- Subhamay Pramanik
- Tao Hong
- Tomonori Saito
- Tugba Turnaoglu
- Tyler Smith
- Vlastimil Kunc
- Xiaobing Liu
- Yeonshil Park
- Yifeng Hu

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

The invention describes a configuration of dishwasher using thermoelectric heat pumps that can accomplish energy savings and enhanced drying performance.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

Develop an innovative refrigerator having a thermoelectric cooler cascaded with a regular refrigerator compression system. the TE cooler dedicatedly controls the temperature in a freezer compartment.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Lean-burn natural gas (NG) engines are a preferred choice for the hard-to-electrify sectors for higher efficiency and lower NOx emissions, but methane slip can be a challenge.