Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Edgar Lara-Curzio
- Shannon M Mahurin
- William Carter
- Ying Yang
- Adam Willoughby
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Bruce A Pint
- Chris Masuo
- Eric Wolfe
- Ilja Popovs
- Li-Qi Qiu
- Luke Meyer
- Rishi Pillai
- Ryan Dehoff
- Saurabh Prakash Pethe
- Steven J Zinkle
- Tolga Aytug
- Uday Vaidya
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Ahmed Hassen
- Alexei P Sokolov
- Alex Walters
- Alice Perrin
- Amy Elliott
- Anees Alnajjar
- Ben Lamm
- Beth L Armstrong
- Brandon Johnston
- Bruce Moyer
- Cameron Adkins
- Charles Hawkins
- Christopher Ledford
- Erin Webb
- Evin Carter
- Frederic Vautard
- Isha Bhandari
- Jayanthi Kumar
- Jeremy Malmstead
- Jiheon Jun
- Joshua Vaughan
- Kaustubh Mungale
- Kitty K Mccracken
- Liam White
- Marie Romedenne
- Meghan Lamm
- Michael Borish
- Michael Kirka
- Nageswara Rao
- Nidia Gallego
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Peter Wang
- Phillip Halstenberg
- Priyanshi Agrawal
- Rangasayee Kannan
- Roger G Miller
- Santa Jansone-Popova
- Sarah Graham
- Shajjad Chowdhury
- Soydan Ozcan
- Subhamay Pramanik
- Sudarsanam Babu
- Tao Hong
- Tim Graening Seibert
- Tomonori Saito
- Tyler Smith
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xianhui Zhao
- Yan-Ru Lin
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.