Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Corson Cramer
- Steve Bullock
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Alex Plotkowski
- Amit Shyam
- Beth L Armstrong
- Craig A Bridges
- Greg Larsen
- James Klett
- Shannon M Mahurin
- Srikanth Yoginath
- Trevor Aguirre
- Vlastimil Kunc
- Ahmed Hassen
- Anees Alnajjar
- Edgar Lara-Curzio
- Ilja Popovs
- James A Haynes
- James J Nutaro
- Li-Qi Qiu
- Pratishtha Shukla
- Saurabh Prakash Pethe
- Sergiy Kalnaus
- Sudip Seal
- Sumit Bahl
- Tolga Aytug
- Tomonori Saito
- Uday Vaidya
- Alexei P Sokolov
- Alice Perrin
- Ali Passian
- Andres Marquez Rossy
- Ben Lamm
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- Dustin Gilmer
- Eric Wolfe
- Frederic Vautard
- Georgios Polyzos
- Gerry Knapp
- Harper Jordan
- Jaswinder Sharma
- Jayanthi Kumar
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Jordan Wright
- Jovid Rakhmonov
- Kaustubh Mungale
- Mariam Kiran
- Meghan Lamm
- Michael Kirka
- Nadim Hmeidat
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nicholas Richter
- Nidia Gallego
- Peeyush Nandwana
- Phillip Halstenberg
- Ryan Dehoff
- Sana Elyas
- Santa Jansone-Popova
- Shajjad Chowdhury
- Steven Guzorek
- Subhamay Pramanik
- Sunyong Kwon
- Tao Hong
- Tony Beard
- Varisara Tansakul
- Ying Yang

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

The technologies provide additively manufactured thermal protection system.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.