Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Shannon M Mahurin
- Bruce Moyer
- Edgar Lara-Curzio
- Ilja Popovs
- Li-Qi Qiu
- Mike Zach
- Saurabh Prakash Pethe
- Tolga Aytug
- Tomonori Saito
- Uday Vaidya
- Ahmed Hassen
- Alexei P Sokolov
- Andrew F May
- Anees Alnajjar
- Annetta Burger
- Ben Garrison
- Ben Lamm
- Beth L Armstrong
- Brad Johnson
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Debraj De
- Diana E Hun
- Easwaran Krishnan
- Eric Wolfe
- Frederic Vautard
- Gautam Malviya Thakur
- Hsin Wang
- James Gaboardi
- James Klett
- James Manley
- Jamieson Brechtl
- Jayanthi Kumar
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse McGaha
- Joe Rendall
- John Lindahl
- Justin Griswold
- Karen Cortes Guzman
- Kashif Nawaz
- Kaustubh Mungale
- Kevin Sparks
- Kuma Sumathipala
- Kuntal De
- Laetitia H Delmau
- Liz McBride
- Luke Sadergaski
- Meghan Lamm
- Mengjia Tang
- Muneeshwaran Murugan
- Nageswara Rao
- Nedim Cinbiz
- Nidia Gallego
- Padhraic L Mulligan
- Phillip Halstenberg
- Sandra Davern
- Santa Jansone-Popova
- Shajjad Chowdhury
- Subhamay Pramanik
- Tao Hong
- Todd Thomas
- Tony Beard
- Vlastimil Kunc
- Xiuling Nie
- Zoriana Demchuk

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

The technologies provide a system and method of needling of veiled AS4 fabric tape.