Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steve Bullock
- Soydan Ozcan
- Steven Guzorek
- Corson Cramer
- Vipin Kumar
- Halil Tekinalp
- Meghan Lamm
- Brian Post
- David Nuttall
- Uday Vaidya
- Umesh N MARATHE
- Beth L Armstrong
- Dan Coughlin
- Greg Larsen
- James Klett
- Katie Copenhaver
- Lawrence {Larry} M Anovitz
- Nadim Hmeidat
- Trevor Aguirre
- Tyler Smith
- Alex Roschli
- Brittany Rodriguez
- Craig Blue
- Georges Chahine
- Jim Tobin
- John Lindahl
- Matt Korey
- Pum Kim
- Sanjita Wasti
- Segun Isaac Talabi
- Subhabrata Saha
- Tomonori Saito
- Xianhui Zhao
- Adam Stevens
- Adwoa Owusu
- Akash Phadatare
- Alexander I Kolesnikov
- Alexei P Sokolov
- Amber Hubbard
- Andrew G Stack
- Bekki Mills
- Ben Lamm
- Cait Clarkson
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Daniel Rasmussen
- David J Mitchell
- Dustin Gilmer
- Erin Webb
- Evin Carter
- Gabriel Veith
- Jeremy Malmstead
- Jesse Heineman
- John Wenzel
- Jordan Wright
- Josh Crabtree
- Julian Charron
- Juliane Weber
- Keju An
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Mark Loguillo
- Marm Dixit
- Matthew B Stone
- Merlin Theodore
- Michael Kirka
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Peng Yang
- Ryan Ogle
- Sai Krishna Reddy Adapa
- Sana Elyas
- Shajjad Chowdhury
- Shannon M Mahurin
- Sudarsanam Babu
- Tao Hong
- Thomas Feldhausen
- Tolga Aytug
- Tony Beard
- Victor Fanelli

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The technologies provide additively manufactured thermal protection system.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.