Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities
(28)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Kyle Kelley
- Lawrence {Larry} M Anovitz
- Rama K Vasudevan
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Scott Smith
- Sergei V Kalinin
- Stephen Jesse
- Akash Jag Prasad
- An-Ping Li
- Andrew G Stack
- Andrew Lupini
- Anton Ievlev
- Bogdan Dryzhakov
- Brian Gibson
- Brian Post
- Calen Kimmell
- Emma Betters
- Greg Corson
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jesse Heineman
- Jewook Park
- John Potter
- Josh B Harbin
- Juliane Weber
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Peng Yang
- Saban Hus
- Sai Krishna Reddy Adapa
- Steven Randolph
- Tony L Schmitz
- Vladimir Orlyanchik
- Yongtao Liu

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.