Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Steve Bullock
- Corson Cramer
- Ahmed Hassen
- Greg Larsen
- James Klett
- Lawrence {Larry} M Anovitz
- Nadim Hmeidat
- Trevor Aguirre
- Vlastimil Kunc
- Steven Guzorek
- Tomonori Saito
- Andrew G Stack
- Beth L Armstrong
- Brittany Rodriguez
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- Diana E Hun
- Dustin Gilmer
- Easwaran Krishnan
- James Manley
- Jamieson Brechtl
- Joe Rendall
- John Lindahl
- Jordan Wright
- Juliane Weber
- Karen Cortes Guzman
- Kashif Nawaz
- Kuma Sumathipala
- Mengjia Tang
- Michael Kirka
- Muneeshwaran Murugan
- Peng Yang
- Sai Krishna Reddy Adapa
- Sana Elyas
- Subhabrata Saha
- Tony Beard
- Tyler Smith
- Vipin Kumar
- Zoriana Demchuk

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The technologies provide additively manufactured thermal protection system.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.

The technologies provide a system and method of needling of veiled AS4 fabric tape.