Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Andrzej Nycz
- Chris Masuo
- Peter Wang
- Alex Walters
- Edgar Lara-Curzio
- Brian Gibson
- Eric Wolfe
- Joshua Vaughan
- Luke Meyer
- Steven J Zinkle
- Udaya C Kalluri
- William Carter
- Xiaohan Yang
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Willoughby
- Akash Jag Prasad
- Amit Shyam
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Post
- Bruce A Pint
- Calen Kimmell
- Charles Hawkins
- Chelo Chavez
- Christopher Fancher
- Chris Tyler
- Clay Leach
- Frederic Vautard
- Gerald Tuskan
- Gordon Robertson
- Ilenne Del Valle Kessra
- Isaiah Dishner
- J.R. R Matheson
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeff Foster
- Jesse Heineman
- John F Cahill
- John Potter
- Josh Michener
- Liangyu Qian
- Marie Romedenne
- Nidia Gallego
- Paul Abraham
- Riley Wallace
- Rishi Pillai
- Ritin Mathews
- Tim Graening Seibert
- Vilmos Kertesz
- Vincent Paquit
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yang Liu

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.