Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Edgar Lara-Curzio
- Ying Yang
- Adam Willoughby
- Bruce A Pint
- Eric Wolfe
- Mike Zach
- Rishi Pillai
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Alice Perrin
- Andrew F May
- Annetta Burger
- Ben Garrison
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Bruce Moyer
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Debraj De
- Frederic Vautard
- Gautam Malviya Thakur
- Gerald Tuskan
- Hsin Wang
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Gaboardi
- James Klett
- Jeff Foster
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse McGaha
- Jiheon Jun
- John F Cahill
- John Lindahl
- Josh Michener
- Justin Griswold
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Liangyu Qian
- Liz McBride
- Luke Sadergaski
- Marie Romedenne
- Meghan Lamm
- Michael Kirka
- Nedim Cinbiz
- Nidia Gallego
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Paul Abraham
- Priyanshi Agrawal
- Ryan Dehoff
- Sandra Davern
- Shajjad Chowdhury
- Tim Graening Seibert
- Todd Thomas
- Tolga Aytug
- Tony Beard
- Vilmos Kertesz
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xiaohan Yang
- Xiuling Nie
- Yan-Ru Lin
- Yang Liu
- Yong Chae Lim
- Zhili Feng

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

The technologies provide a system and method of needling of veiled AS4 fabric tape.