Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Alexander I Wiechert
- Costas Tsouris
- Debangshu Mukherjee
- Gerald Tuskan
- Gs Jung
- Gyoung Gug Jang
- Hongbin Sun
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jeff Foster
- John F Cahill
- Josh Michener
- Liangyu Qian
- Md Inzamam Ul Haque
- Nate See
- Olga S Ovchinnikova
- Paul Abraham
- Prashant Jain
- Radu Custelcean
- Ramanan Sankaran
- Thien D. Nguyen
- Vilmos Kertesz
- Vimal Ramanuj
- Wenjun Ge
- Xiaohan Yang
- Yang Liu

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

The invention provides on-line analysis of droplets for mass spectrometry.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.