Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Amit K Naskar
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Viswadeep Lebakula
- Aaron Myers
- Alexandre Sorokine
- Annetta Burger
- Arit Das
- Benjamin L Doughty
- Carter Christopher
- Chance C Brown
- Christopher Bowland
- Clinton Stipek
- Daniel Adams
- Debraj De
- Edgar Lara-Curzio
- Eve Tsybina
- Felix L Paulauskas
- Frederic Vautard
- Gautam Malviya Thakur
- Gerald Tuskan
- Holly Humphrey
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Gaboardi
- Jeff Foster
- Jesse McGaha
- Jessica Moehl
- John F Cahill
- Josh Michener
- Justin Cazares
- Kevin Sparks
- Liangyu Qian
- Liz McBride
- Matt Larson
- Paul Abraham
- Philipe Ambrozio Dias
- Robert E Norris Jr
- Santanu Roy
- Sumit Gupta
- Taylor Hauser
- Todd Thomas
- Uvinduni Premadasa
- Vera Bocharova
- Vilmos Kertesz
- Xiaohan Yang
- Xiuling Nie
- Yang Liu

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.