Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Alex Plotkowski
- Amit Shyam
- Venugopal K Varma
- James A Haynes
- Mahabir Bhandari
- Mike Zach
- Sumit Bahl
- Adam Aaron
- Alice Perrin
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Charles D Ottinger
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Gerry Knapp
- Govindarajan Muralidharan
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Jovid Rakhmonov
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Nedim Cinbiz
- Nicholas Richter
- Padhraic L Mulligan
- Peeyush Nandwana
- Rose Montgomery
- Ryan Dehoff
- Sandra Davern
- Sunyong Kwon
- Thomas R Muth
- Tony Beard
- Ying Yang

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

The interface gasket for building envelope is designed to enhance the installation of windows and other objects into building openings.

A high-strength, heat-resistant Al-Ce-Ni alloy optimized for additive manufacturing in industrial applications.