Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities
(28)
Researcher
- Hongbin Sun
- Kyle Kelley
- Rama K Vasudevan
- Venugopal K Varma
- Mahabir Bhandari
- Sergei V Kalinin
- Adam Aaron
- Anton Ievlev
- Bogdan Dryzhakov
- Charles D Ottinger
- Govindarajan Muralidharan
- Ilias Belharouak
- Kevin M Roccapriore
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rose Montgomery
- Ruhul Amin
- Sergey Smolentsev
- Stephen Jesse
- Steven J Zinkle
- Steven Randolph
- Thien D. Nguyen
- Thomas R Muth
- Vishaldeep Sharma
- Yanli Wang
- Ying Yang
- Yongtao Liu
- Yutai Kato

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.

The interface gasket for building envelope is designed to enhance the installation of windows and other objects into building openings.