Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Amit Shyam
- Alex Plotkowski
- Venugopal K Varma
- James A Haynes
- Mahabir Bhandari
- Ryan Dehoff
- Sumit Bahl
- Ying Yang
- Adam Aaron
- Adam Stevens
- Alice Perrin
- Andres Marquez Rossy
- Andrew F May
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Brian Post
- Carter Christopher
- Chance C Brown
- Charles D Ottinger
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Dean T Pierce
- Debraj De
- Gautam Malviya Thakur
- Gerry Knapp
- Gordon Robertson
- Govindarajan Muralidharan
- Hsin Wang
- James Gaboardi
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse McGaha
- John Lindahl
- Jovid Rakhmonov
- Kevin Sparks
- Liz McBride
- Mike Zach
- Nedim Cinbiz
- Nicholas Richter
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Rose Montgomery
- Sarah Graham
- Sergey Smolentsev
- Steven J Zinkle
- Sudarsanam Babu
- Sunyong Kwon
- Thomas R Muth
- Todd Thomas
- Tony Beard
- William Peter
- Xiuling Nie
- Yanli Wang
- Yukinori Yamamoto
- Yutai Kato

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.