Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Venugopal K Varma
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Mahabir Bhandari
- Scott Smith
- Adam Aaron
- Akash Jag Prasad
- Brian Gibson
- Brian Post
- Calen Kimmell
- Charles D Ottinger
- Emma Betters
- Govindarajan Muralidharan
- Greg Corson
- Hongbin Sun
- Jesse Heineman
- John Potter
- Josh B Harbin
- Nate See
- Prashant Jain
- Rose Montgomery
- Sergey Smolentsev
- Steven J Zinkle
- Thien D. Nguyen
- Thomas R Muth
- Tony L Schmitz
- Vladimir Orlyanchik
- Yanli Wang
- Ying Yang
- Yutai Kato

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.