Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Chris Tyler
- Radu Custelcean
- Justin West
- Costas Tsouris
- Ritin Mathews
- Bruce Moyer
- Gyoung Gug Jang
- Jeffrey Einkauf
- Venugopal K Varma
- Benjamin L Doughty
- David Olvera Trejo
- Gs Jung
- J.R. R Matheson
- Jaydeep Karandikar
- Mahabir Bhandari
- Nikki Thiele
- Santa Jansone-Popova
- Scott Smith
- Adam Aaron
- Akash Jag Prasad
- Alexander I Wiechert
- Brian Gibson
- Brian Post
- Calen Kimmell
- Charles D Ottinger
- Emma Betters
- Govindarajan Muralidharan
- Greg Corson
- Ilja Popovs
- Jayanthi Kumar
- Jennifer M Pyles
- Jesse Heineman
- John Potter
- Jong K Keum
- Josh B Harbin
- Laetitia H Delmau
- Luke Sadergaski
- Md Faizul Islam
- Mina Yoon
- Parans Paranthaman
- Rose Montgomery
- Santanu Roy
- Saurabh Prakash Pethe
- Sergey Smolentsev
- Steven J Zinkle
- Subhamay Pramanik
- Thomas R Muth
- Tony L Schmitz
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik
- Yanli Wang
- Ying Yang
- Yingzhong Ma
- Yutai Kato

The invention teaches a method for separating uranium and the transuranic actinides neptunium, plutonium, and americium from nitric acid solutions by co-crystallization upon lowering the temperature from 60 C to 20 C or lower.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.