Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
- (-) Fusion and Fission Energy and Science Directorate (24)
Researcher
- Brian Post
- Chris Tyler
- Justin West
- Peter Wang
- Andrzej Nycz
- Ritin Mathews
- Blane Fillingim
- Chris Masuo
- Edgar Lara-Curzio
- Hongbin Sun
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Venugopal K Varma
- Adam Stevens
- Ahmed Hassen
- David Olvera Trejo
- Eddie Lopez Honorato
- Eric Wolfe
- J.R. R Matheson
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Mahabir Bhandari
- Michael Kirka
- Prashant Jain
- Rangasayee Kannan
- Ryan Dehoff
- Ryan Heldt
- Scott Smith
- Steven J Zinkle
- Tyler Gerczak
- William Carter
- Yanli Wang
- Ying Yang
- Yousub Lee
- Yutai Kato
- Adam Aaron
- Adam Willoughby
- Akash Jag Prasad
- Alexander Enders
- Alexander I Wiechert
- Alex Roschli
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon A Wilson
- Brandon Johnston
- Brian Gibson
- Bruce A Pint
- Calen Kimmell
- Callie Goetz
- Cameron Adkins
- Charles D Ottinger
- Charles F Weber
- Charles Hawkins
- Christopher Fancher
- Christopher Hobbs
- Christopher Ledford
- Christopher S Blessinger
- Corson Cramer
- Costas Tsouris
- Craig Blue
- Emma Betters
- Frederic Vautard
- Fred List III
- Gordon Robertson
- Govindarajan Muralidharan
- Greg Corson
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Isha Bhandari
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joanna Mcfarlane
- John Lindahl
- John Potter
- Jonathan Willocks
- Joseph Olatt
- Josh B Harbin
- Junghyun Bae
- Keith Carver
- Kunal Mondal
- Liam White
- Luke Meyer
- Mahim Mathur
- Marie Romedenne
- Matt Kurley III
- Matt Vick
- Michael Borish
- Mike Zach
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nidia Gallego
- Nithin Panicker
- Oscar Martinez
- Philip Bingham
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rishi Pillai
- Rodney D Hunt
- Roger G Miller
- Rose Montgomery
- Ruhul Amin
- Sam Hollifield
- Sarah Graham
- Sergey Smolentsev
- Steve Bullock
- Steven Guzorek
- Thien D. Nguyen
- Thomas Butcher
- Thomas R Muth
- Tim Graening Seibert
- Tony L Schmitz
- Trevor Aguirre
- Ugur Mertyurek
- Vandana Rallabandi
- Venkatakrishnan Singanallur Vaidyanathan
- Vincent Paquit
- Vishaldeep Sharma
- Vittorio Badalassi
- Vladimir Orlyanchik
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yukinori Yamamoto

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.