Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Fusion and Fission Energy and Science Directorate (24)
Researcher
- Omer Onar
- Subho Mukherjee
- Vivek Sujan
- Mostak Mohammad
- Vandana Rallabandi
- Erdem Asa
- Shajjad Chowdhury
- Adam Siekmann
- Burak Ozpineci
- Emrullah Aydin
- Hongbin Sun
- Jon Wilkins
- Venugopal K Varma
- Eddie Lopez Honorato
- Gui-Jia Su
- Isabelle Snyder
- Mahabir Bhandari
- Prashant Jain
- Ryan Heldt
- Tyler Gerczak
- Veda Prakash Galigekere
- Adam Aaron
- Alexander Enders
- Alexander I Wiechert
- Ali Riza Ekti
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Callie Goetz
- Charles D Ottinger
- Charles F Weber
- Christopher Hobbs
- Christopher S Blessinger
- Costas Tsouris
- Fred List III
- Govindarajan Muralidharan
- Hong Wang
- Hsin Wang
- Hyeonsup Lim
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Junghyun Bae
- Keith Carver
- Kunal Mondal
- Lingxiao Xue
- Mahim Mathur
- Matt Kurley III
- Matt Vick
- Mike Zach
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oscar Martinez
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rafal Wojda
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Sam Hollifield
- Sergey Smolentsev
- Steven J Zinkle
- Thien D. Nguyen
- Thomas Butcher
- Thomas R Muth
- Ugur Mertyurek
- Vishaldeep Sharma
- Vittorio Badalassi
- Yanli Wang
- Ying Yang
- Yutai Kato

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

This invention presents a multiport converter (MPC) based power supply to charge the 12 V and 24 V auxiliary batteries in heavy duty (HD) fuel cell (FC) electric vehicle (EV) power train.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

This invention presents an integrated strategy to reduce end-user electricity costs and grid carbon emissions by efficiently utilizing Distributed Energy Resources (DER) and grid-scale electrical energy storage systems, such as batteries.

A Family of Integrated On-board Charger for Single and Dual Motor based Electric Vehicle Power Train
The invention aims to reduce the cost, weight and volume of existing on-board electric vehicle chargers by integrating power electronic converters of the chargers with the traction inverter.

Currently there is no capability to test materials, sensors, and nuclear fuels at extremely high temperatures and under radiation conditions for nuclear thermal rocket propulsion or advanced reactors.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

No readily available public data exists for vehicle class and weight information that covers the entire U.S. highway network. The Travel Monitoring Analysis System, managed by the Federal Highway Administration covers only less than 1% of the US highway network.