Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
- (-) Fusion and Fission Energy and Science Directorate (24)
Researcher
- Radu Custelcean
- Costas Tsouris
- Ying Yang
- Bruce Moyer
- Gyoung Gug Jang
- Hongbin Sun
- Jeffrey Einkauf
- Venugopal K Varma
- Alexander I Wiechert
- Alice Perrin
- Benjamin L Doughty
- Eddie Lopez Honorato
- Gs Jung
- Mahabir Bhandari
- Nikki Thiele
- Prashant Jain
- Ryan Heldt
- Santa Jansone-Popova
- Steven J Zinkle
- Tyler Gerczak
- Yanli Wang
- Yutai Kato
- Adam Aaron
- Alexander Enders
- Alex Plotkowski
- Amit Shyam
- Andrew F May
- Ben Garrison
- Benjamin Lawrie
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Bruce A Pint
- Callie Goetz
- Charles D Ottinger
- Charles F Weber
- Chengyun Hua
- Christopher Hobbs
- Christopher Ledford
- Christopher S Blessinger
- David S Parker
- Fred List III
- Gabor Halasz
- Gerry Knapp
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Ilja Popovs
- Isaac Sikkema
- James A Haynes
- Jayanthi Kumar
- Jennifer M Pyles
- Jiaqiang Yan
- Joanna Mcfarlane
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Junghyun Bae
- Keith Carver
- Kunal Mondal
- Laetitia H Delmau
- Luke Sadergaski
- Mahim Mathur
- Matt Kurley III
- Matt Vick
- Md Faizul Islam
- Michael Kirka
- Mike Zach
- Mina Yoon
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nicholas Richter
- Nithin Panicker
- Oscar Martinez
- Parans Paranthaman
- Patxi Fernandez-Zelaia
- Petro Maksymovych
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Dehoff
- Sam Hollifield
- Santanu Roy
- Saurabh Prakash Pethe
- Sergey Smolentsev
- Subhamay Pramanik
- Sumit Bahl
- Sunyong Kwon
- Thien D. Nguyen
- Thomas Butcher
- Thomas R Muth
- Tim Graening Seibert
- Ugur Mertyurek
- Uvinduni Premadasa
- Vandana Rallabandi
- Vera Bocharova
- Vishaldeep Sharma
- Vittorio Badalassi
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yingzhong Ma

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

The invention teaches a method for separating uranium and the transuranic actinides neptunium, plutonium, and americium from nitric acid solutions by co-crystallization upon lowering the temperature from 60 C to 20 C or lower.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur