Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
- (-) Fusion and Fission Energy and Science Directorate (24)
Researcher
- Edgar Lara-Curzio
- Hongbin Sun
- Venugopal K Varma
- Ying Yang
- Adam Willoughby
- Bruce A Pint
- Eddie Lopez Honorato
- Eric Wolfe
- Mahabir Bhandari
- Prashant Jain
- Rishi Pillai
- Ryan Heldt
- Steven J Zinkle
- Tyler Gerczak
- Yanli Wang
- Yutai Kato
- Adam Aaron
- Alexander Enders
- Alexander I Wiechert
- Alice Perrin
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon A Wilson
- Brandon Johnston
- Callie Goetz
- Charles D Ottinger
- Charles F Weber
- Charles Hawkins
- Christopher Hobbs
- Christopher Ledford
- Christopher S Blessinger
- Costas Tsouris
- Frederic Vautard
- Fred List III
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Jiheon Jun
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Junghyun Bae
- Keith Carver
- Kunal Mondal
- Mahim Mathur
- Marie Romedenne
- Matt Kurley III
- Matt Vick
- Meghan Lamm
- Michael Kirka
- Mike Zach
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nidia Gallego
- Nithin Panicker
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Dehoff
- Sam Hollifield
- Sergey Smolentsev
- Shajjad Chowdhury
- Thien D. Nguyen
- Thomas Butcher
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Ugur Mertyurek
- Vandana Rallabandi
- Vishaldeep Sharma
- Vittorio Badalassi
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yong Chae Lim
- Zhili Feng

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

Currently there is no capability to test materials, sensors, and nuclear fuels at extremely high temperatures and under radiation conditions for nuclear thermal rocket propulsion or advanced reactors.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.