Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
- (-) Fusion and Fission Energy and Science Directorate (24)
Researcher
- Edgar Lara-Curzio
- Hongbin Sun
- Venugopal K Varma
- Ying Yang
- Adam Willoughby
- Bruce A Pint
- Daniel Jacobson
- Eddie Lopez Honorato
- Eric Wolfe
- Mahabir Bhandari
- Prashant Jain
- Rishi Pillai
- Ryan Heldt
- Steven J Zinkle
- Tyler Gerczak
- Yanli Wang
- Yutai Kato
- Adam Aaron
- Alexander Enders
- Alexander I Wiechert
- Alice Perrin
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon A Wilson
- Brandon Johnston
- Callie Goetz
- Charles D Ottinger
- Charles F Weber
- Charles Hawkins
- Christopher Hobbs
- Christopher Ledford
- Christopher S Blessinger
- Costas Tsouris
- Frederic Vautard
- Fred List III
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Jiheon Jun
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Junghyun Bae
- Keith Carver
- Kunal Mondal
- Mahim Mathur
- Marie Romedenne
- Matt Kurley III
- Matt Vick
- Meghan Lamm
- Michael Kirka
- Mike Zach
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nidia Gallego
- Nithin Panicker
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Dehoff
- Sam Hollifield
- Sergey Smolentsev
- Shajjad Chowdhury
- Thien D. Nguyen
- Thomas Butcher
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Ugur Mertyurek
- Vandana Rallabandi
- Vishaldeep Sharma
- Vittorio Badalassi
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yong Chae Lim
- Zhili Feng

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.