Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Brian Post
- Andrzej Nycz
- Peter Wang
- Chris Masuo
- Blane Fillingim
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- J.R. R Matheson
- Joshua Vaughan
- Lauren Heinrich
- Luke Meyer
- Peeyush Nandwana
- William Carter
- Yousub Lee
- Adam Stevens
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Roschli
- Alex Walters
- Amit Shyam
- Bekki Mills
- Brian Gibson
- Bruce Hannan
- Cameron Adkins
- Christopher Fancher
- Chris Tyler
- Craig Blue
- Dave Willis
- David Olvera Trejo
- Gordon Robertson
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- John Wenzel
- Keju An
- Liam White
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Michael Borish
- Polad Shikhaliev
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Scott Smith
- Shannon M Mahurin
- Steven Guzorek
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladislav N Sedov
- Vlastimil Kunc
- William Peter
- Yacouba Diawara
- Yukinori Yamamoto
- Yun Liu
21 - 26 of 26 Results

In wire-arc additive manufacturing and hot-wire laser additive manufacturing, wire is fed into a melt pool and melted through the arc or laser process.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

The technology describes an electron beam in a storage ring as a quantum computer.

An innovative rapid manufacturing method for tailored fiber preforms with controlled fiber alignment for enhanced mechanical properties.

A novel approach was applied for the preparation of polymer membranes having CO2-philic group for CO2 separation.