Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Brian Post
- Ali Passian
- Peter Wang
- Andrzej Nycz
- Chris Masuo
- Blane Fillingim
- Joseph Chapman
- Nicholas Peters
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Hsuan-Hao Lu
- J.R. R Matheson
- Joseph Lukens
- Joshua Vaughan
- Lauren Heinrich
- Luke Meyer
- Muneer Alshowkan
- Peeyush Nandwana
- William Carter
- Yousub Lee
- Adam Stevens
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Roschli
- Alex Walters
- Amit Shyam
- Anees Alnajjar
- Bekki Mills
- Brian Gibson
- Brian Williams
- Bruce Hannan
- Cameron Adkins
- Christopher Fancher
- Chris Tyler
- Claire Marvinney
- Craig Blue
- Dave Willis
- David Olvera Trejo
- Gordon Robertson
- Harper Jordan
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- John Wenzel
- Keju An
- Liam White
- Loren L Funk
- Luke Chapman
- Mariam Kiran
- Mark Loguillo
- Matthew B Stone
- Michael Borish
- Nance Ericson
- Polad Shikhaliev
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Scott Smith
- Shannon M Mahurin
- Srikanth Yoginath
- Steven Guzorek
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Varisara Tansakul
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladislav N Sedov
- Vlastimil Kunc
- William Peter
- Yacouba Diawara
- Yukinori Yamamoto
- Yun Liu

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.