Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Brian Post
- Steve Bullock
- Corson Cramer
- Ahmed Hassen
- Peter Wang
- Andrzej Nycz
- Vlastimil Kunc
- Blane Fillingim
- Chris Masuo
- Greg Larsen
- James Klett
- Lawrence {Larry} M Anovitz
- Nadim Hmeidat
- Steven Guzorek
- Sudarsanam Babu
- Thomas Feldhausen
- Trevor Aguirre
- Craig Blue
- J.R. R Matheson
- John Lindahl
- Joshua Vaughan
- Lauren Heinrich
- Peeyush Nandwana
- Yousub Lee
- Adam Stevens
- Alex Roschli
- Amit Shyam
- Andrew G Stack
- Beth L Armstrong
- Brian Gibson
- Brittany Rodriguez
- Cameron Adkins
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Chris Tyler
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- David Olvera Trejo
- Dustin Gilmer
- Gordon Robertson
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Potter
- Jordan Wright
- Juliane Weber
- Liam White
- Luke Meyer
- Michael Borish
- Michael Kirka
- Peng Yang
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Sai Krishna Reddy Adapa
- Sana Elyas
- Sarah Graham
- Scott Smith
- Subhabrata Saha
- Tomonori Saito
- Tony Beard
- Tyler Smith
- Vipin Kumar
- William Carter
- William Peter
- Yukinori Yamamoto

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The technologies provide additively manufactured thermal protection system.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.