Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Fusion and Fission Energy and Science Directorate (21)
Researcher
- Brian Post
- Costas Tsouris
- Peter Wang
- Andrew Sutton
- Michelle Kidder
- Radu Custelcean
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Gyoung Gug Jang
- Sudarsanam Babu
- Thomas Feldhausen
- Venugopal K Varma
- Ahmed Hassen
- Alexander I Wiechert
- Gs Jung
- Hongbin Sun
- J.R. R Matheson
- Joshua Vaughan
- Lauren Heinrich
- Mahabir Bhandari
- Michael Cordon
- Peeyush Nandwana
- Prashant Jain
- Yousub Lee
- Adam Aaron
- Adam Stevens
- Ajibola Lawal
- Alex Roschli
- Amit Shyam
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Brian Gibson
- Callie Goetz
- Cameron Adkins
- Canhai Lai
- Charles D Ottinger
- Charles F Weber
- Christopher Fancher
- Christopher Hobbs
- Chris Tyler
- Craig Blue
- David Olvera Trejo
- Dhruba Deka
- Eddie Lopez Honorato
- Fred List III
- Gordon Robertson
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Isha Bhandari
- James Parks II
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jesse Heineman
- Joanna Mcfarlane
- John Lindahl
- John Potter
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Keith Carver
- Kunal Mondal
- Liam White
- Luke Meyer
- Mahim Mathur
- Matt Kurley III
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Michael Borish
- Mike Zach
- Mina Yoon
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oscar Martinez
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rangasayee Kannan
- Richard Howard
- Ritin Mathews
- Rodney D Hunt
- Roger G Miller
- Rose Montgomery
- Ruhul Amin
- Ryan Dehoff
- Ryan Heldt
- Sam Hollifield
- Sarah Graham
- Scott Smith
- Sergey Smolentsev
- Sreshtha Sinha Majumdar
- Steven Guzorek
- Steven J Zinkle
- Thomas Butcher
- Thomas R Muth
- Tyler Gerczak
- Ugur Mertyurek
- Vandana Rallabandi
- Vishaldeep Sharma
- Vittorio Badalassi
- Vlastimil Kunc
- William Carter
- William Peter
- Yanli Wang
- Yeonshil Park
- Ying Yang
- Yukinori Yamamoto
- Yutai Kato

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Monoterpenes conversion to C10 aromatics (60%) and C10 cycloalkanes (40%) in an inert environment, provides an established route for sustainable aviation fuel (SAF) blends sourced directly from biomass captured terpenes mixtures.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.