Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Amit Shyam
- Andrzej Nycz
- Alex Plotkowski
- Blane Fillingim
- Chris Masuo
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Alexey Serov
- J.R. R Matheson
- James A Haynes
- Jaswinder Sharma
- Joshua Vaughan
- Lauren Heinrich
- Ryan Dehoff
- Sumit Bahl
- Xiang Lyu
- Yousub Lee
- Adam Stevens
- Alex Roschli
- Alice Perrin
- Amit K Naskar
- Andres Marquez Rossy
- Beth L Armstrong
- Brian Gibson
- Cameron Adkins
- Christopher Fancher
- Chris Tyler
- Craig Blue
- David Olvera Trejo
- Gabriel Veith
- Georgios Polyzos
- Gerry Knapp
- Gordon Robertson
- Holly Humphrey
- Isha Bhandari
- James Szybist
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Jonathan Willocks
- Jovid Rakhmonov
- Junbin Choi
- Khryslyn G Araño
- Liam White
- Logan Kearney
- Luke Meyer
- Marm Dixit
- Meghan Lamm
- Michael Borish
- Michael Toomey
- Michelle Lehmann
- Nicholas Richter
- Nihal Kanbargi
- Rangasayee Kannan
- Ritin Mathews
- Ritu Sahore
- Roger G Miller
- Sarah Graham
- Scott Smith
- Steven Guzorek
- Sunyong Kwon
- Todd Toops
- Vlastimil Kunc
- William Carter
- William Peter
- Ying Yang
- Yukinori Yamamoto

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.