Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Brian Post
- Andrzej Nycz
- Chris Masuo
- Peter Wang
- Ryan Dehoff
- Vincent Paquit
- Peeyush Nandwana
- Alex Walters
- Blane Fillingim
- Joshua Vaughan
- Luke Meyer
- Michael Kirka
- Rangasayee Kannan
- Sudarsanam Babu
- Thomas Feldhausen
- Venkatakrishnan Singanallur Vaidyanathan
- William Carter
- Adam Stevens
- Ahmed Hassen
- Alex Roschli
- Amir K Ziabari
- Brian Gibson
- Chris Tyler
- Clay Leach
- J.R. R Matheson
- Lauren Heinrich
- Philip Bingham
- Udaya C Kalluri
- Yousub Lee
- Akash Jag Prasad
- Alice Perrin
- Amit Shyam
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Costas Tsouris
- Craig Blue
- David Olvera Trejo
- Diana E Hun
- Erin Webb
- Evin Carter
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Isha Bhandari
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- John Lindahl
- John Potter
- Kitty K Mccracken
- Liam White
- Mark M Root
- Michael Borish
- Obaid Rahman
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Sarah Graham
- Scott Smith
- Soydan Ozcan
- Steven Guzorek
- Tyler Smith
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

Gas metal arc welding (GMAW) wire arc additive manufacturing (WAAM) processes use inert shielding to protect the weld arc during material deposition, but do not protect the trailing bead, which can lead to weld issues varying from low finish quality to diminished material prop

Technologies are described directed to reducing weld additive part distortion with spot compressions integrated into the build process. The disclosed technologies can be used to make weld additive parts with potentially better geometrical accuracy.

Complex protective casings and housings are necessary for many applications, including combustion chambers of gas turbines used in aerospace engines. Manufacturing these components from forging and/or casting as a whole is challenging, costly, and time-consuming.

In wire-arc additive manufacturing and hot-wire laser additive manufacturing, wire is fed into a melt pool and melted through the arc or laser process.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

An innovative system for automating the surveillance and manipulation of plant tissues using advanced machine vision and robotic tools.