Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Brian Post
- Peter Wang
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Hongbin Sun
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Eddie Lopez Honorato
- J.R. R Matheson
- Joshua Vaughan
- Lauren Heinrich
- Peeyush Nandwana
- Prashant Jain
- Ryan Heldt
- Tyler Gerczak
- Yousub Lee
- Adam Stevens
- Alexander Enders
- Alexander I Wiechert
- Alex Roschli
- Amit Shyam
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Brian Gibson
- Brian Sanders
- Callie Goetz
- Cameron Adkins
- Charles F Weber
- Christopher Fancher
- Christopher Hobbs
- Christopher S Blessinger
- Chris Tyler
- Costas Tsouris
- Craig Blue
- David Olvera Trejo
- Fred List III
- Gerald Tuskan
- Gordon Robertson
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Ilenne Del Valle Kessra
- Ilias Belharouak
- Isaac Sikkema
- Isaiah Dishner
- Isha Bhandari
- Jay Reynolds
- Jeff Brookins
- Jeff Foster
- Jerry Parks
- Jesse Heineman
- Joanna Mcfarlane
- John F Cahill
- John Lindahl
- John Potter
- Jonathan Willocks
- Joseph Olatt
- Josh Michener
- Junghyun Bae
- Keith Carver
- Kunal Mondal
- Liam White
- Liangyu Qian
- Luke Meyer
- Mahim Mathur
- Matt Kurley III
- Matt Vick
- Michael Borish
- Mike Zach
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oscar Martinez
- Paul Abraham
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rangasayee Kannan
- Richard Howard
- Ritin Mathews
- Rodney D Hunt
- Roger G Miller
- Rose Montgomery
- Ruhul Amin
- Ryan Dehoff
- Sam Hollifield
- Sarah Graham
- Scott Smith
- Steven Guzorek
- Thien D. Nguyen
- Thomas Butcher
- Thomas R Muth
- Ugur Mertyurek
- Vandana Rallabandi
- Venugopal K Varma
- Vilmos Kertesz
- Vishaldeep Sharma
- Vittorio Badalassi
- Vlastimil Kunc
- William Carter
- William Peter
- Xiaohan Yang
- Yang Liu
- Yukinori Yamamoto

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.