Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Brian Post
- Peter Wang
- Andrzej Nycz
- Blane Fillingim
- Chris Masuo
- Sudarsanam Babu
- Thomas Feldhausen
- Ahmed Hassen
- Craig Blue
- J.R. R Matheson
- John Lindahl
- Joshua Vaughan
- Lauren Heinrich
- Mike Zach
- Peeyush Nandwana
- Yousub Lee
- Adam Stevens
- Alex Roschli
- Amit Shyam
- Andrew F May
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Brian Gibson
- Bruce Moyer
- Cameron Adkins
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Chris Tyler
- Daniel Rasmussen
- David Olvera Trejo
- Debjani Pal
- Debraj De
- Gautam Malviya Thakur
- Gordon Robertson
- Hsin Wang
- Isha Bhandari
- James Gaboardi
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse Heineman
- Jesse McGaha
- John Potter
- Justin Griswold
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Liam White
- Liz McBride
- Luke Meyer
- Luke Sadergaski
- Michael Borish
- Nedim Cinbiz
- Padhraic L Mulligan
- Rangasayee Kannan
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Sandra Davern
- Sarah Graham
- Scott Smith
- Steven Guzorek
- Todd Thomas
- Tony Beard
- Vlastimil Kunc
- William Carter
- William Peter
- Xiuling Nie
- Yukinori Yamamoto

This invention discusses the methodology to calibrating a multi-robot system with an arbitrary number of agents to obtain single coordinate frame with high accuracy.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

Technologies are described directed to reducing weld additive part distortion with spot compressions integrated into the build process. The disclosed technologies can be used to make weld additive parts with potentially better geometrical accuracy.

Complex protective casings and housings are necessary for many applications, including combustion chambers of gas turbines used in aerospace engines. Manufacturing these components from forging and/or casting as a whole is challenging, costly, and time-consuming.

In wire-arc additive manufacturing and hot-wire laser additive manufacturing, wire is fed into a melt pool and melted through the arc or laser process.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.