Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Brian Post
- Andrzej Nycz
- Chris Masuo
- Peter Wang
- Alex Walters
- Blane Fillingim
- Joshua Vaughan
- Luke Meyer
- Sudarsanam Babu
- Thomas Feldhausen
- William Carter
- Ahmed Hassen
- Brian Gibson
- Chris Tyler
- J.R. R Matheson
- Lauren Heinrich
- Peeyush Nandwana
- Udaya C Kalluri
- Yousub Lee
- Adam Stevens
- Akash Jag Prasad
- Alexandre Sorokine
- Alex Roschli
- Amit Shyam
- Calen Kimmell
- Cameron Adkins
- Chelo Chavez
- Christopher Fancher
- Clay Leach
- Clinton Stipek
- Craig Blue
- Daniel Adams
- David Olvera Trejo
- Gordon Robertson
- Isha Bhandari
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jessica Moehl
- John Lindahl
- John Potter
- Liam White
- Michael Borish
- Philipe Ambrozio Dias
- Rangasayee Kannan
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Scott Smith
- Steven Guzorek
- Taylor Hauser
- Vincent Paquit
- Viswadeep Lebakula
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xiaohan Yang
- Yukinori Yamamoto

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.

A valve solution that prevents cross contamination while allowing for blocking multiple channels at once using only one actuator.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.