Filter Results
Related Organization
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (26)
Researcher
- Adam M Guss
- Josh Michener
- Bo Shen
- Liangyu Qian
- Praveen Cheekatamarla
- Vishaldeep Sharma
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Daniel Jacobson
- Isaiah Dishner
- James Manley
- Jeff Foster
- John F Cahill
- Kuntal De
- Kyle Gluesenkamp
- Serena Chen
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alex Roschli
- Alex Walters
- Austin L Carroll
- Brian Sanders
- Chris Masuo
- Clay Leach
- Debjani Pal
- Easwaran Krishnan
- Erin Webb
- Evin Carter
- Gerald Tuskan
- Hongbin Sun
- Ilenne Del Valle Kessra
- Jamieson Brechtl
- Jay D Huenemann
- Jeremy Malmstead
- Jerry Parks
- Joanna Tannous
- Joe Rendall
- Kashif Nawaz
- Kitty K Mccracken
- Kyle Davis
- Melanie Moses-DeBusk Debusk
- Mengdawn Cheng
- Muneeshwaran Murugan
- Nandhini Ashok
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Soydan Ozcan
- Tyler Smith
- Vincent Paquit
- Xianhui Zhao
- Yang Liu
- Yasemin Kaygusuz
- Yifeng Hu

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

This technology can activate gene expression in a time- and dose-dependent manner in the thermophilic bacterium Clostridium thermocellum. This system will mediate inducible gene expression for strain engineering in C.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

Orphan bHLH enhances plant biomass gain. The orphan bHLH gene has an exclusive nuclear subcellular localization with a transcriptional activator activity.

The use of class A3 and A2L refrigerants to replace conventional hydrofluorocarbons for their low global warming potential (GWP) presents risks due to leaks of flammable mixtures that could result in fire or explosion.

The quality and quantity of refrigerant charge in any vapor compression-based heating and cooling system is vital to its energy efficiency, thermal capacity, and reliability.