Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Diana E Hun
- Som Shrestha
- Tomonori Saito
- Philip Boudreaux
- Zoriana Demchuk
- Andrzej Nycz
- Bryan Maldonado Puente
- Chris Masuo
- Luke Meyer
- Mahabir Bhandari
- Nolan Hayes
- Peter Wang
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Venugopal K Varma
- William Carter
- Achutha Tamraparni
- Adam Aaron
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- Andre O Desjarlais
- Bekki Mills
- Bruce Hannan
- Catalin Gainaru
- Charles D Ottinger
- Dave Willis
- Gina Accawi
- Gurneesh Jatana
- Hongbin Sun
- John Wenzel
- Joshua Vaughan
- Karen Cortes Guzman
- Keju An
- Kuma Sumathipala
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Mark M Root
- Matthew B Stone
- Mengjia Tang
- Natasha Ghezawi
- Nate See
- Polad Shikhaliev
- Prashant Jain
- Shannon M Mahurin
- Stephen M Killough
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Thien D. Nguyen
- Vasilis Tzoganis
- Vasiliy Morozov
- Venkatakrishnan Singanallur Vaidyanathan
- Victor Fanelli
- Vladislav N Sedov
- Yacouba Diawara
- Yun Liu
- Zhenglai Shen

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Neutron beams are used around the world to study materials for various purposes.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.