Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Brian Post
- Diana E Hun
- Chris Tyler
- Peter Wang
- Justin West
- Som Shrestha
- Andrzej Nycz
- Philip Boudreaux
- Ritin Mathews
- Tomonori Saito
- Blane Fillingim
- Chris Masuo
- Edgar Lara-Curzio
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Zoriana Demchuk
- Adam Stevens
- Ahmed Hassen
- Bryan Maldonado Puente
- David Olvera Trejo
- Eric Wolfe
- J.R. R Matheson
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Mahabir Bhandari
- Michael Kirka
- Nolan Hayes
- Rangasayee Kannan
- Ryan Dehoff
- Scott Smith
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Steven J Zinkle
- Venkatakrishnan Singanallur Vaidyanathan
- Venugopal K Varma
- William Carter
- Yanli Wang
- Ying Yang
- Yousub Lee
- Yutai Kato
- Achutha Tamraparni
- Adam Aaron
- Adam Willoughby
- Akash Jag Prasad
- Alex Roschli
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Andre O Desjarlais
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Gibson
- Bruce A Pint
- Calen Kimmell
- Cameron Adkins
- Catalin Gainaru
- Charles D Ottinger
- Charles Hawkins
- Christopher Fancher
- Christopher Ledford
- Corson Cramer
- Craig Blue
- Emma Betters
- Frederic Vautard
- Fred List III
- Gina Accawi
- Gordon Robertson
- Greg Corson
- Gurneesh Jatana
- Isha Bhandari
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Josh B Harbin
- Karen Cortes Guzman
- Keith Carver
- Kuma Sumathipala
- Liam White
- Luke Meyer
- Marie Romedenne
- Mark M Root
- Mengjia Tang
- Michael Borish
- Natasha Ghezawi
- Nidia Gallego
- Philip Bingham
- Richard Howard
- Rishi Pillai
- Roger G Miller
- Sarah Graham
- Stephen M Killough
- Steve Bullock
- Steven Guzorek
- Thomas Butcher
- Tim Graening Seibert
- Tony L Schmitz
- Trevor Aguirre
- Vincent Paquit
- Vladimir Orlyanchik
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yukinori Yamamoto
- Zhenglai Shen

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.