Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Diana E Hun
- Som Shrestha
- Philip Boudreaux
- Tomonori Saito
- Alex Plotkowski
- Amit Shyam
- Zoriana Demchuk
- Adam Willoughby
- Bryan Maldonado Puente
- James A Haynes
- Mahabir Bhandari
- Nolan Hayes
- Rishi Pillai
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Sumit Bahl
- Venugopal K Varma
- Achutha Tamraparni
- Adam Aaron
- Alice Perrin
- Andre O Desjarlais
- Andres Marquez Rossy
- Brandon Johnston
- Bruce A Pint
- Catalin Gainaru
- Charles D Ottinger
- Charles Hawkins
- Gerry Knapp
- Gina Accawi
- Gurneesh Jatana
- Jiheon Jun
- Jovid Rakhmonov
- Karen Cortes Guzman
- Kuma Sumathipala
- Marie Romedenne
- Mark M Root
- Mengjia Tang
- Natasha Ghezawi
- Nicholas Richter
- Peeyush Nandwana
- Peter Wang
- Priyanshi Agrawal
- Ryan Dehoff
- Stephen M Killough
- Sunyong Kwon
- Venkatakrishnan Singanallur Vaidyanathan
- Ying Yang
- Yong Chae Lim
- Zhenglai Shen
- Zhili Feng

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Commercial closed-cell insulation foam boards reduce their thermal resistivity by up to 30% due to gas diffusion in and out of foam cells.